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Notation & Definitions

@ Computational Complexity: Classification of problems
according to their difficulty. We usually measure the amount
of resources (e.g . time, space, gates) used by an algorithm
as a function of the input size n.
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Notation & Definitions

@ Computational Complexity: Classification of problems
according to their difficulty. We usually measure the amount
of resources (e.g . time, space, gates) used by an algorithm
as a function of the input size n.

o Complexity class: Is a set of problems with related
resource-based complexity

@ Notation:

- f(n)isin O(g(n)) if for some constant m there exists a
positive constant such that f(n) < cg(n) for all n > m

- f(n)is in Q(g(n)) if for some constant m there exists a
positive constant ¢ such that 7(n) > cg(n) for all n > m

- f(n)isin ©(g(n)) if for some constant m there exists positive
constants ¢; < ¢ such that cig(n) < f(n) < cg(n) for all
n>m
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Some Useful Complexity Classes

Decision problems:

@ P: Solved by a deterministic Turing machine in polynomial
time (classical deterministic computer solves efficiently)
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Some Useful Complexity Classes

Decision problems:

@ P: Solved by a deterministic Turing machine in polynomial
time (classical deterministic computer solves efficiently)

@ NP: Verifiable in polynomial time by deterministic Turing
machine.
Alternatively, the “yes" instances can be accepted in
polynomial time by a non-deterministic Turing machine
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Some Useful Complexity Classes

Decision problems:

@ P: Solved by a deterministic Turing machine in polynomial
time (classical deterministic computer solves efficiently)

@ NP: Verifiable in polynomial time by deterministic Turing
machine.
Alternatively, the “yes" instances can be accepted in
polynomial time by a non-deterministic Turing machine

© PSPACE: Solved by Turing machine using polynomial
amount of space (irrespective of the time needed)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms |



Some Useful Complexity Classes

Decision problems:

@ P: Solved by a deterministic Turing machine in polynomial
time (classical deterministic computer solves efficiently)

@ NP: Verifiable in polynomial time by deterministic Turing
machine.
Alternatively, the “yes" instances can be accepted in
polynomial time by a non-deterministic Turing machine

© PSPACE: Solved by Turing machine using polynomial
amount of space (irrespective of the time needed)

@ BPP: Solved by probabilistic TM in poly time with bounded
error (classical probabilistic computer solves efficiently)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms |



Some Useful Complexity Classes

Decision problems:

@ P: Solved by a deterministic Turing machine in polynomial
time (classical deterministic computer solves efficiently)

@ NP: Verifiable in polynomial time by deterministic Turing
machine.
Alternatively, the “yes" instances can be accepted in
polynomial time by a non-deterministic Turing machine

© PSPACE: Solved by Turing machine using polynomial
amount of space (irrespective of the time needed)

@ BPP: Solved by probabilistic TM in poly time with bounded
error (classical probabilistic computer solves efficiently)

© BQP: Solved by probabilistic quantum computer in poly time
with bounded error (quantum computer solves efficiently)
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Complexity Classes Relations

Proven Relations:

e BQP C PSPACE. Problems solved by quantum computers
can be solved (potentially inefficiently) by classical computers
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Proven Relations:

e BQP C PSPACE. Problems solved by quantum computers
can be solved (potentially inefficiently) by classical computers

e BPP C BQP. Quantum computers are at least as efficient as
probabilistic Turing machines
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Complexity Classes Relations

Proven Relations:

e BQP C PSPACE. Problems solved by quantum computers
can be solved (potentially inefficiently) by classical computers

e BPP C BQP. Quantum computers are at least as efficient as
probabilistic Turing machines

Conjectured Relations: (based on other plausible assumptions)

PSPACE

BQP @ NP
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Complexity Classes Relations

Proven Relations:

e BQP C PSPACE. Problems solved by quantum computers
can be solved (potentially inefficiently) by classical computers

e BPP C BQP. Quantum computers are at least as efficient as
probabilistic Turing machines

Conjectured Relations: (based on other plausible assumptions)

@ There are problems outside NP that quantum computers can
solve

@ There are problems in NP that quantum computers cannot
solve (therefore NP-complete problems should be outside
BQP)
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The Church - Turing Theses

(1) Church-Turing Thesis (original)

All physical computable functions can be computed by a Turing
machine
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The Church - Turing Theses

(1) Church-Turing Thesis (original)

All physical computable functions can be computed by a Turing
machine

@ No reference to the efficiency of the computation

@ Quantum computers do not affect this statement
(BQP C PSPACE)
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The Church - Turing Theses

(1) Church-Turing Thesis (original)

All physical computable functions can be computed by a Turing
machine

@ No reference to the efficiency of the computation

@ Quantum computers do not affect this statement
(BQP C PSPACE)

(2) Church-Turing Thesis (computational complexity)

A probabilistic Turing machine can efficiently simulate any
realistic model of computation
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The Church - Turing Theses

(1) Church-Turing Thesis (original)

All physical computable functions can be computed by a Turing
machine

@ No reference to the efficiency of the computation

@ Quantum computers do not affect this statement
(BQP C PSPACE)

(2) Church-Turing Thesis (computational complexity)

A probabilistic Turing machine can efficiently simulate any
realistic model of computation

e If as conjectured BPP € BQP then (2) is wrong!
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The Church - Turing Theses

(1) Church-Turing Thesis (original)

All physical computable functions can be computed by a Turing
machine

@ No reference to the efficiency of the computation

@ Quantum computers do not affect this statement
(BQP C PSPACE)

(2') Church-Turing Thesis (quantum)

A quantum Turing machine can efficiently simulate any realistic
model of computation
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The Oracle Model

@ We are given a classical gate corresponding to an unknown
function f as a black box (oracle)
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The Oracle Model

@ We are given a classical gate corresponding to an unknown
function f as a black box (oracle)

@ Access: Query the oracle, i.e. insert x and obtain f(x)
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The Oracle Model

@ We are given a classical gate corresponding to an unknown
function f as a black box (oracle)

@ Access: Query the oracle, i.e. insert x and obtain f(x)

@ Goal: Determine properties of the function f with the fewest
queries to the oracle
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The Quantum Oracle Model

@ We are given a quantum gate corresponding to an unknown
classical function f as a black box (oracle) acting on two
qubits in the following way:

a a

b bDfia)
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The Quantum Oracle Model

@ We are given a quantum gate corresponding to an unknown
classical function f as a black box (oracle) acting on two
qubits in the following way:

a a

b bDfia)

@ Access: Query the quantum oracle, i.e. insert |a) |b) and
obtain |a) |b & f(a))
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The Quantum Oracle Model

@ We are given a quantum gate corresponding to an unknown
classical function f as a black box (oracle) acting on two
qubits in the following way:

a a

b bDfia)

@ Access: Query the quantum oracle, i.e. insert |a) |b) and
obtain |a) |b & f(a))
By linearity, we can also query in superposition:

D Capla)|b) = > Copla) [be f(a))
a,b a,b
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The Quantum Oracle Model

@ We are given a quantum gate corresponding to an unknown
classical function f as a black box (oracle) acting on two
qubits in the following way:

a a

b bDfia)

@ Access: Query the quantum oracle, i.e. insert |a) |b) and
obtain |a) |b & f(a))
By linearity, we can also query in superposition:

D Capla)|b) = > Copla) [be f(a))
a,b a,b

@ Goal: Determine properties of the classical function f with the
fewest queries to the quantum oracle
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The Deutsch - Jozsa Algorithm

@ Inspiration for Shor's and Grover's algorithms
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The Deutsch - Jozsa Algorithm

@ Inspiration for Shor's and Grover's algorithms

@ Initial protocol by Deutsch 1985, improved by Jozsa. Current
version, is result of further research (Cleve, Ekert,
Macchiavello and Mosca)
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The Deutsch - Jozsa Algorithm

@ Input: A boolean function f : {0,1}" — {0,1}
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The Deutsch - Jozsa Algorithm

@ Input: A boolean function f : {0,1}" — {0,1}

@ Promise: The function is either constant or balanced
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The Deutsch - Jozsa Algorithm

@ Input: A boolean function f : {0,1}" — {0,1}
@ Promise: The function is either constant or balanced

Constant: f(x) =cV xand c=0or 1
Balanced: |f~1(0)| = |f~%(1)] i.e. half inputs give 0 and half
give 1
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The Deutsch - Jozsa Algorithm

@ Input: A boolean function f : {0,1}" — {0,1}

@ Promise: The function is either constant or balanced
Constant: f(x) =cV xand c=0or 1
Balanced: |f~1(0)| = |f~%(1)] i.e. half inputs give 0 and half
give 1

@ Output: Determine whether the function is constant or is
balanced with the fewest queries
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The Deutsch - Jozsa Algorithm

@ Input: A boolean function f : {0,1}" — {0,1}

@ Promise: The function is either constant or balanced
Constant: f(x) =cV xand c=0or 1
Balanced: |f~1(0)| = |f~%(1)] i.e. half inputs give 0 and half
give 1

@ Output: Determine whether the function is constant or is
balanced with the fewest queries

@ Performance:

© Classical: To know with certainty we need at least 2"/2 + 1
queries
@ Quantum: With a single oracle query
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The Deutsch - Jozsa Algorithm

@ Recall that Us is defined as:

S Gy K Iy) = 37 Gy 1) Iy @ F())
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The Deutsch - Jozsa Algorithm

@ Recall that Us is defined as:
Z Coy ¥ ly) = Z Cay [X) ly & f(x))
X,y X,y

@ The Quantum Circuit of the algorithm is given by:

‘0> H®n H®n
Ur
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The Deutsch - Jozsa Algorithm

Property:
Hlx) = 55 3 e (=17 ly) = 5 (10) + (=1)¥[1))
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The Deutsch - Jozsa Algorithm

Property:
Hlx) = 55 3 e (=17 ly) = 5 (10) + (=1)¥[1))
The protocol’s steps:

@ [o) =10)®"|1). Note that the first register refers to string of
n qubits, while the second register is a single qubit.
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The Deutsch - Jozsa Algorithm

Property:
Hix) = 75 Xyerony (-1 ly) = 75 (10) + (=1)¥[1))
The protocol’s steps:
@ o) = [0)®"[1). Note that the first register refers to string of

n qubits, while the second register is a single qubit.
@ Apply H to all qubits:

1
1) = 2 19 (0) = 1)
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The Deutsch - Jozsa Algorithm

Property:
Hix) = 75 Xyerony (-1 ly) = 75 (10) + (=1)¥[1))
The protocol’s steps:
@ o) = [0)®"[1). Note that the first register refers to string of

n qubits, while the second register is a single qubit.
@ Apply H to all qubits:

1
l1h1) = > X0y - 1)
© Apply the oracle Us:

2"—-1

> b (IF(x)) — 11 @ F(x))

xX=

1
y/2n+1

12) =
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The Deutsch - Jozsa Algorithm

Property
Hix) = 75 Xyerony (-1 ly) = 75 (10) + (=1)¥[1))
The protocol’s steps:
@ o) = [0)®"[1). Note that the first register refers to string of

n qubits, while the second register is a single qubit.
@ Apply H to all qubits:

21
) = s 2 b0 00~ 1)
© Apply the oracle Us:
2"—1
o) = \/W Z [x) —[1ef(x)))
it can be rewritten as:
=
o) = Vot Z 1) 1x) (10) - |1))
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@ Apply H®" to the first n qubits:

] 2oLl - B 1
v = 35 > | DO )@ (o) - 1)

y=0 x=0

where x -y = Xoyo ® x1y1 D - -+ DB Xn_1Yn_1 is the sum of the
bitwise product.
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@ Apply H®" to the first n qubits:

] 2oLl - » 1
v = 35 > | DO )@ (o) - 1)

y=0 x=0

where x -y = Xoyo ® x1y1 D - -+ DB Xn_1Yn_1 is the sum of the
bitwise product.

© We measure the first n qubits in the computational basis and
we examine the probability of obtaining all zero’s (]0)"):

2"—1

p(0) = 5, 37 (~1) P M)

0
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@ Apply H®" to the first n qubits:

] 2oLl - » 1
v = 35 > | DO )@ (o) - 1)

y=0 x=0

where x -y = Xoyo ® x1y1 D - -+ DB Xn_1Yn_1 is the sum of the
bitwise product.

© We measure the first n qubits in the computational basis and
we examine the probability of obtaining all zero's (|0)“"):

2"—1

p(0) = 5, 37 (~1) P M)

0

If f(x) is constant, all terms have the same sign and Eq. (1)
gives p(0) =1
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@ Apply H®" to the first n qubits:

] 2oLl - » 1
v = 35 > | DO )@ (o) - 1)

y=0 x=0

where x -y = Xoyo ® x1y1 D - -+ DB Xn_1Yn_1 is the sum of the
bitwise product.

© We measure the first n qubits in the computational basis and
we examine the probability of obtaining all zero’s (]0)"):

271
p(O) = 5 (-1 P 1)
0
If f(x) is constant, all terms have the same sign and Eq. (1)
gives p(0) =1
If f(x) is balanced, half terms are +1 and half terms are —1
resulting to Eq. (1) giving p(0) =0
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The Deutsch - Jozsa Algorithm

@ The algorithm is deterministic. Belongs to EQP (Exact
Quantum Polynomial time) which is the quantum version of P
(rather than in BQP which is the quantum version of BPP).
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The Deutsch - Jozsa Algorithm

@ The algorithm is deterministic. Belongs to EQP (Exact
Quantum Polynomial time) which is the quantum version of P
(rather than in BQP which is the quantum version of BPP).

@ It constitutes the first exponential quantum speed-up.
From exponential many oracle calls for P algorithms, we
succeed with a single oracle query in EQP!
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The Deutsch - Jozsa Algorithm

@ The algorithm is deterministic. Belongs to EQP (Exact
Quantum Polynomial time) which is the quantum version of P
(rather than in BQP which is the quantum version of BPP).

@ It constitutes the first exponential quantum speed-up.
From exponential many oracle calls for P algorithms, we
succeed with a single oracle query in EQP!

@ It does not give a speed-up compared to BPP, since if we
allow for (small) probability of failure, there exist efficient
classical algorithms with constant oracle calls (example?)
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Quantum Fourier Transform

Property:

N-1

yz; exp <2Nm(x ~ x’)y) = N 2)
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Quantum Fourier Transform

Property:

N-1

yz; exp <2Nm(x ~ x’)y) = N 2)

Notation:
Q [x) =[x Xp) = [x1) ® [x2) ® -+ @ |x,), where
x = x12" 4 2" 2 o, 20
Q [0x1-xm] =D 1 xk275 eg. [0xix0] = 2 + %
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Quantum Fourier Transform

Property:

N-1

Z exp <27“ x —x')y > = Ny (2)

Notation:
Q [X)=|x1x2 X)) = |x1) ® |x2) @ -+ @ |X,), Where
x = x12" 4 2" 2 o, 20
Q [0x1-xm] =D 1 xk275 eg. [0xix0] = 2 + %
e Definition (classical): The Discrete Fourier Transform
(DFT) takes a N-dimensional complex vector (ap, -+ ,ay_1)
and maps it to (b, -, by_1) in this way:

; Nl
b, = \/» Z ay exp(2mixy /N) (3)
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Quantum Fourier Transform

e Definition (quantum): The Quantum Fourier Transform
(QFT) is a unitary operation F that performs DFT to the
amplitudes of a quantum state:

N-1 N-1 N-1N-1
FY adx)=> byly) = Z > acexp(2mixy/N) |y)
x=0 y=0 y 0 x=0

where the amplitudes a,, b, are related as in DFT.
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Quantum Fourier Transform

e Definition (quantum): The Quantum Fourier Transform
(QFT) is a unitary operation F that performs DFT to the
amplitudes of a quantum state:

N-1 N-1 N-1N-1
FY adx)=> byly) = Z > acexp(2mixy/N) |y)
x=0 y=0 y 0 x=0

where the amplitudes a,, b, are related as in DFT.

@ To determine a quantum operation it suffices to know how it
acts on computational basis state and then extend by linearity
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Quantum Fourier Transform

e Definition (quantum): The Quantum Fourier Transform
(QFT) is a unitary operation F that performs DFT to the
amplitudes of a quantum state:

N-1 N-1 N-1N-1
FY adx)=> byly) = Z > acexp(2mixy/N) |y)
x=0 y=0 y 0 x=0

where the amplitudes a,, b, are related as in DFT.
@ To determine a quantum operation it suffices to know how it
acts on computational basis state and then extend by linearity

@ The QFT acts as (note that N = 2"):

F |X1X2 - Xn> — ﬁ (‘0> + eQﬂ'i[OAXn] ‘1>> ® (|O> + e27ri[0.xn71><n] ‘1)) ®

Q- ® <‘0> + e27ri[0.x1><2~~)<n] |1>> (4)
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Quantum Fourier Transform

e We will use Eq. (4) as definition for QF T

Is not hard to see that it is essentially the same with Eq. (3)
of the DFT (see Appendix)
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Quantum Fourier Transform

e We will use Eq. (4) as definition for QF T

Is not hard to see that it is essentially the same with Eq. (3)
of the DFT (see Appendix)

@ The Quantum Circuit for F is:

|x1) Ro_1 Rﬂ 0) -+ e2mi0x1xn |1

[x2) [H— -+ —RiaHRiaf} -+ ————————  |0) + &0
[Xn_1) . |0) -+ e2mi0xn-1x0 |1)

[xa) o HE [0) + X0 |1

1

0

the qubits and a factor % at the end of the circuit

0
where the gate Ry = [ 27”-/24 and we omitted a swap of
e

Petros Wallden Lecture 7: Complexity and Quantum Algorithms |



Quantum Fourier Transform

e We will use Eq. (4) as definition for QF T

Is not hard to see that it is essentially the same with Eq. (3)
of the DFT (see Appendix)

@ The Quantum Circuit for F is:

|x1) Ro_1 Rﬂ 0) -+ e2mi0x1xn |1

[x2) [H— -+ —RiaHRiaf} -+ ————————  |0) + &0
[Xn_1) . |0) -+ e2mi0xn-1x0 |1)

[xa) o HE [0) + X0 |1

1

0

the qubits and a factor % at the end of the circuit

where the gate Ry = [ 27”-/24 and we omitted a swap of
e

@ It is simple to see that F is unitary since the circuit consists of
unitary gates (see also Appendix)
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Quantum Fourier Transform

Example: Three qubits

F Ixixax3) = [th11p213)

) = 5 (10 + €270 1))
[z = 1 (10) + €m0l 1))
[3) = 5 (10} + €20l 1)
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Quantum Fourier Transform

Example: Three qubits

Flxaxoxs) = [111p21P3)
1) (10) + >0l 1))
|12) (l0) 4 e?mil0xxl 1))
‘1/]3> — \/5 (|0> + eQﬂ'i[O.X1X2X3] |1>)

=SSl

The corresponding circuit is:

[x1) Re Rs lt3)
x2) H [ Re] |2)

|x3) —{Hl— [¢1)
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Quantum Fourier Transform

@ The number of gates in QFT (including the final swaps) is
O(n?)
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Quantum Fourier Transform

@ The number of gates in QFT (including the final swaps) is
O(n?)

e To implement the classical Fast Fourier Transform ©(n2")
gates are needed
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Quantum Fourier Transform

@ The number of gates in QFT (including the final swaps) is
O(n?)

e To implement the classical Fast Fourier Transform ©(n2")
gates are needed

@ It appears we obtained an exponential speed-up for a task
(DFT) that has many application
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Quantum Fourier Transform

@ The number of gates in QFT (including the final swaps) is
O(n?)

e To implement the classical Fast Fourier Transform ©(n2")
gates are needed

@ It appears we obtained an exponential speed-up for a task
(DFT) that has many application

@ However, we cannot access(read-out) the amplitudes of a

quantum state, so we cannot extract the classical values of
the DFT.

@ To achieve real speed-up, we need to use QFT as part of
larger algorithm (see later!)
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Appendix: QFT proof details

@ Rewrite Eq. (4):

Flxaxa:-xp) = |[h1tha---1)n)
= ﬁ ( S enilon I}/1>) ® ( > rilxevaly |y2>) ®

»ef{0,1} y2€{0,1}
R ® Z 6271'/'[0.><1><2'--><,,]y,7 |}/n>
yn€{0,1}

-

( Do emn/2) y1>> ®< Y. e Y2>) ;

»nefo.1} y2e{0,1}

@ ® ( Z e2mix(yn/2") yn>>

yn€{0,1}

— W®’ 1( S ernn2) y,) (5)

yi€{0,1}
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Appendix: QFT proof details

It follows that

2
,_.

Flxixa - xp) = e2mix 321y yi/2! ly)

T
.l_.o

/N y) ©)

3= 3=

1
o

where we used that y = y12" 71 + 272 4 ... 4,20,
similarly for x and N = 2".
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Appendix: QFT proof details

@ Express F as an operator: F = \f ny 0 2Py /N ly) (x|

@ Show that is unitary:

N-1
FIE = & 3 e 2Ny /[ @79V ) x)
x,y,x",y'=0
1 N-1 o
= X eI ()
x,y,x",y'=0
1 N-1 N-1 oy
— m Z Ze—Zmy(x —x)/N |X,> <X‘
x,x’:O y=0
1 N-1
= % Z NGy XY (x| = Z|x>< =10
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