
Introduction to Quantum Computing
Lecture 7: Complexity and Quantum Algorithms I

Petros Wallden

School of Informatics, University of Edinburgh

9th October 2018
T
H
E

U
N I V E

R
S

I
T
Y

O
F

E
D

I N B
U

R
G

H

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Notation & Definitions

Computational Complexity: Classification of problems
according to their difficulty. We usually measure the amount
of resources (e.g . time, space, gates) used by an algorithm
as a function of the input size n.

Complexity class: Is a set of problems with related
resource-based complexity

Notation:

- f (n) is in O(g(n)) if for some constant m there exists a
positive constant such that f (n) ≤ cg(n) for all n ≥ m

- f (n) is in Ω(g(n)) if for some constant m there exists a
positive constant c such that f (n) ≥ cg(n) for all n ≥ m

- f (n) is in Θ(g(n)) if for some constant m there exists positive
constants c1 ≤ c2 such that c1g(n) ≤ f (n) ≤ c2g(n) for all
n ≥ m

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Notation & Definitions

Computational Complexity: Classification of problems
according to their difficulty. We usually measure the amount
of resources (e.g . time, space, gates) used by an algorithm
as a function of the input size n.

Complexity class: Is a set of problems with related
resource-based complexity

Notation:

- f (n) is in O(g(n)) if for some constant m there exists a
positive constant such that f (n) ≤ cg(n) for all n ≥ m

- f (n) is in Ω(g(n)) if for some constant m there exists a
positive constant c such that f (n) ≥ cg(n) for all n ≥ m

- f (n) is in Θ(g(n)) if for some constant m there exists positive
constants c1 ≤ c2 such that c1g(n) ≤ f (n) ≤ c2g(n) for all
n ≥ m

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Notation & Definitions

Computational Complexity: Classification of problems
according to their difficulty. We usually measure the amount
of resources (e.g . time, space, gates) used by an algorithm
as a function of the input size n.

Complexity class: Is a set of problems with related
resource-based complexity

Notation:

- f (n) is in O(g(n)) if for some constant m there exists a
positive constant such that f (n) ≤ cg(n) for all n ≥ m

- f (n) is in Ω(g(n)) if for some constant m there exists a
positive constant c such that f (n) ≥ cg(n) for all n ≥ m

- f (n) is in Θ(g(n)) if for some constant m there exists positive
constants c1 ≤ c2 such that c1g(n) ≤ f (n) ≤ c2g(n) for all
n ≥ m

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Some Useful Complexity Classes

Decision problems:

1 P: Solved by a deterministic Turing machine in polynomial
time (classical deterministic computer solves efficiently)

2 NP: Verifiable in polynomial time by deterministic Turing
machine.
Alternatively, the “yes” instances can be accepted in
polynomial time by a non-deterministic Turing machine

3 PSPACE: Solved by Turing machine using polynomial
amount of space (irrespective of the time needed)

4 BPP: Solved by probabilistic TM in poly time with bounded
error (classical probabilistic computer solves efficiently)

5 BQP: Solved by probabilistic quantum computer in poly time
with bounded error (quantum computer solves efficiently)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Some Useful Complexity Classes

Decision problems:

1 P: Solved by a deterministic Turing machine in polynomial
time (classical deterministic computer solves efficiently)

2 NP: Verifiable in polynomial time by deterministic Turing
machine.
Alternatively, the “yes” instances can be accepted in
polynomial time by a non-deterministic Turing machine

3 PSPACE: Solved by Turing machine using polynomial
amount of space (irrespective of the time needed)

4 BPP: Solved by probabilistic TM in poly time with bounded
error (classical probabilistic computer solves efficiently)

5 BQP: Solved by probabilistic quantum computer in poly time
with bounded error (quantum computer solves efficiently)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Some Useful Complexity Classes

Decision problems:

1 P: Solved by a deterministic Turing machine in polynomial
time (classical deterministic computer solves efficiently)

2 NP: Verifiable in polynomial time by deterministic Turing
machine.
Alternatively, the “yes” instances can be accepted in
polynomial time by a non-deterministic Turing machine

3 PSPACE: Solved by Turing machine using polynomial
amount of space (irrespective of the time needed)

4 BPP: Solved by probabilistic TM in poly time with bounded
error (classical probabilistic computer solves efficiently)

5 BQP: Solved by probabilistic quantum computer in poly time
with bounded error (quantum computer solves efficiently)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Some Useful Complexity Classes

Decision problems:

1 P: Solved by a deterministic Turing machine in polynomial
time (classical deterministic computer solves efficiently)

2 NP: Verifiable in polynomial time by deterministic Turing
machine.
Alternatively, the “yes” instances can be accepted in
polynomial time by a non-deterministic Turing machine

3 PSPACE: Solved by Turing machine using polynomial
amount of space (irrespective of the time needed)

4 BPP: Solved by probabilistic TM in poly time with bounded
error (classical probabilistic computer solves efficiently)

5 BQP: Solved by probabilistic quantum computer in poly time
with bounded error (quantum computer solves efficiently)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Some Useful Complexity Classes

Decision problems:

1 P: Solved by a deterministic Turing machine in polynomial
time (classical deterministic computer solves efficiently)

2 NP: Verifiable in polynomial time by deterministic Turing
machine.
Alternatively, the “yes” instances can be accepted in
polynomial time by a non-deterministic Turing machine

3 PSPACE: Solved by Turing machine using polynomial
amount of space (irrespective of the time needed)

4 BPP: Solved by probabilistic TM in poly time with bounded
error (classical probabilistic computer solves efficiently)

5 BQP: Solved by probabilistic quantum computer in poly time
with bounded error (quantum computer solves efficiently)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Complexity Classes Relations

Proven Relations:

BQP ⊆ PSPACE. Problems solved by quantum computers
can be solved (potentially inefficiently) by classical computers

BPP ⊆ BQP. Quantum computers are at least as efficient as
probabilistic Turing machines

Conjectured Relations: (based on other plausible assumptions)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Complexity Classes Relations

Proven Relations:

BQP ⊆ PSPACE. Problems solved by quantum computers
can be solved (potentially inefficiently) by classical computers

BPP ⊆ BQP. Quantum computers are at least as efficient as
probabilistic Turing machines

Conjectured Relations: (based on other plausible assumptions)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Complexity Classes Relations

Proven Relations:

BQP ⊆ PSPACE. Problems solved by quantum computers
can be solved (potentially inefficiently) by classical computers

BPP ⊆ BQP. Quantum computers are at least as efficient as
probabilistic Turing machines

Conjectured Relations: (based on other plausible assumptions)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Complexity Classes Relations

Proven Relations:

BQP ⊆ PSPACE. Problems solved by quantum computers
can be solved (potentially inefficiently) by classical computers

BPP ⊆ BQP. Quantum computers are at least as efficient as
probabilistic Turing machines

Conjectured Relations: (based on other plausible assumptions)
1 There are problems outside NP that quantum computers can

solve
2 There are problems in NP that quantum computers cannot

solve (therefore NP-complete problems should be outside
BQP)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Church - Turing Theses

(1) Church-Turing Thesis (original)

All physical computable functions can be computed by a Turing
machine

No reference to the efficiency of the computation

Quantum computers do not affect this statement
(BQP ⊆ PSPACE)

(2) Church-Turing Thesis (computational complexity)

A probabilistic Turing machine can efficiently simulate any
realistic model of computation

If as conjectured BPP ⊂ BQP then (2) it is wrong!

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Church - Turing Theses

(1) Church-Turing Thesis (original)

All physical computable functions can be computed by a Turing
machine

No reference to the efficiency of the computation

Quantum computers do not affect this statement
(BQP ⊆ PSPACE)

(2) Church-Turing Thesis (computational complexity)

A probabilistic Turing machine can efficiently simulate any
realistic model of computation

If as conjectured BPP ⊂ BQP then (2) it is wrong!

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Church - Turing Theses

(1) Church-Turing Thesis (original)

All physical computable functions can be computed by a Turing
machine

No reference to the efficiency of the computation

Quantum computers do not affect this statement
(BQP ⊆ PSPACE)

(2) Church-Turing Thesis (computational complexity)

A probabilistic Turing machine can efficiently simulate any
realistic model of computation

If as conjectured BPP ⊂ BQP then (2) it is wrong!

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Church - Turing Theses

(1) Church-Turing Thesis (original)

All physical computable functions can be computed by a Turing
machine

No reference to the efficiency of the computation

Quantum computers do not affect this statement
(BQP ⊆ PSPACE)

(2) Church-Turing Thesis (computational complexity)

A probabilistic Turing machine can efficiently simulate any
realistic model of computation

If as conjectured BPP ⊂ BQP then (2) is wrong!

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Church - Turing Theses

(1) Church-Turing Thesis (original)

All physical computable functions can be computed by a Turing
machine

No reference to the efficiency of the computation

Quantum computers do not affect this statement
(BQP ⊆ PSPACE)

(2’) Church-Turing Thesis (quantum)

A quantum Turing machine can efficiently simulate any realistic
model of computation

If as conjectured BPP ⊂ BQP then (2) it is wrong!

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Oracle Model

We are given a classical gate corresponding to an unknown
function f as a black box (oracle)

Access: Query the oracle, i.e. insert x and obtain f (x)

Goal: Determine properties of the function f with the fewest
queries to the oracle

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Oracle Model

We are given a classical gate corresponding to an unknown
function f as a black box (oracle)

Access: Query the oracle, i.e. insert x and obtain f (x)

Goal: Determine properties of the function f with the fewest
queries to the oracle

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Oracle Model

We are given a classical gate corresponding to an unknown
function f as a black box (oracle)

Access: Query the oracle, i.e. insert x and obtain f (x)

Goal: Determine properties of the function f with the fewest
queries to the oracle

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Quantum Oracle Model

We are given a quantum gate corresponding to an unknown
classical function f as a black box (oracle) acting on two
qubits in the following way:

Access: Query the quantum oracle, i.e. insert |a〉 |b〉 and
obtain |a〉 |b ⊕ f (a)〉
By linearity, we can also query in superposition:∑

a,b

Ca,b |a〉 |b〉 →
∑
a,b

Ca,b |a〉 |b ⊕ f (a)〉

Goal: Determine properties of the classical function f with the
fewest queries to the quantum oracle

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Quantum Oracle Model

We are given a quantum gate corresponding to an unknown
classical function f as a black box (oracle) acting on two
qubits in the following way:

Access: Query the quantum oracle, i.e. insert |a〉 |b〉 and
obtain |a〉 |b ⊕ f (a)〉

By linearity, we can also query in superposition:∑
a,b

Ca,b |a〉 |b〉 →
∑
a,b

Ca,b |a〉 |b ⊕ f (a)〉

Goal: Determine properties of the classical function f with the
fewest queries to the quantum oracle

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Quantum Oracle Model

We are given a quantum gate corresponding to an unknown
classical function f as a black box (oracle) acting on two
qubits in the following way:

Access: Query the quantum oracle, i.e. insert |a〉 |b〉 and
obtain |a〉 |b ⊕ f (a)〉
By linearity, we can also query in superposition:∑

a,b

Ca,b |a〉 |b〉 →
∑
a,b

Ca,b |a〉 |b ⊕ f (a)〉

Goal: Determine properties of the classical function f with the
fewest queries to the quantum oracle

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Quantum Oracle Model

We are given a quantum gate corresponding to an unknown
classical function f as a black box (oracle) acting on two
qubits in the following way:

Access: Query the quantum oracle, i.e. insert |a〉 |b〉 and
obtain |a〉 |b ⊕ f (a)〉
By linearity, we can also query in superposition:∑

a,b

Ca,b |a〉 |b〉 →
∑
a,b

Ca,b |a〉 |b ⊕ f (a)〉

Goal: Determine properties of the classical function f with the
fewest queries to the quantum oracle

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

Inspiration for Shor’s and Grover’s algorithms

Input: A boolean function f : {0, 1}n → {0, 1}
Promise: The function is either constant or balanced

Constant: f (x) = c ∀ x and c = 0 or 1

Balanced: |f −1(0)| = |f −1(1)| i.e. half inputs give 0 and half
give 1

Output: Determine whether the function is constant or is
balanced with the fewest queries

Performance:
1 Classical: To know with certainty we need at least 2n/2 + 1

queries
2 Quantum: With a single oracle query

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

Inspiration for Shor’s and Grover’s algorithms

Initial protocol by Deutsch 1985, improved by Jozsa. Current
version, is result of further research (Cleve, Ekert,
Macchiavello and Mosca)

Input: A boolean function f : {0, 1}n → {0, 1}
Promise: The function is either constant or balanced

Constant: f (x) = c ∀ x and c = 0 or 1

Balanced: |f −1(0)| = |f −1(1)| i.e. half inputs give 0 and half
give 1

Output: Determine whether the function is constant or is
balanced with the fewest queries

Performance:
1 Classical: To know with certainty we need at least 2n/2 + 1

queries
2 Quantum: With a single oracle query

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

Input: A boolean function f : {0, 1}n → {0, 1}

Promise: The function is either constant or balanced

Constant: f (x) = c ∀ x and c = 0 or 1

Balanced: |f −1(0)| = |f −1(1)| i.e. half inputs give 0 and half
give 1

Output: Determine whether the function is constant or is
balanced with the fewest queries

Performance:
1 Classical: To know with certainty we need at least 2n/2 + 1

queries
2 Quantum: With a single oracle query

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

Input: A boolean function f : {0, 1}n → {0, 1}
Promise: The function is either constant or balanced

Constant: f (x) = c ∀ x and c = 0 or 1

Balanced: |f −1(0)| = |f −1(1)| i.e. half inputs give 0 and half
give 1

Output: Determine whether the function is constant or is
balanced with the fewest queries

Performance:
1 Classical: To know with certainty we need at least 2n/2 + 1

queries
2 Quantum: With a single oracle query

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

Input: A boolean function f : {0, 1}n → {0, 1}
Promise: The function is either constant or balanced

Constant: f (x) = c ∀ x and c = 0 or 1

Balanced: |f −1(0)| = |f −1(1)| i.e. half inputs give 0 and half
give 1

Output: Determine whether the function is constant or is
balanced with the fewest queries

Performance:
1 Classical: To know with certainty we need at least 2n/2 + 1

queries
2 Quantum: With a single oracle query

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

Input: A boolean function f : {0, 1}n → {0, 1}
Promise: The function is either constant or balanced

Constant: f (x) = c ∀ x and c = 0 or 1

Balanced: |f −1(0)| = |f −1(1)| i.e. half inputs give 0 and half
give 1

Output: Determine whether the function is constant or is
balanced with the fewest queries

Performance:
1 Classical: To know with certainty we need at least 2n/2 + 1

queries
2 Quantum: With a single oracle query

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

Input: A boolean function f : {0, 1}n → {0, 1}
Promise: The function is either constant or balanced

Constant: f (x) = c ∀ x and c = 0 or 1

Balanced: |f −1(0)| = |f −1(1)| i.e. half inputs give 0 and half
give 1

Output: Determine whether the function is constant or is
balanced with the fewest queries

Performance:
1 Classical: To know with certainty we need at least 2n/2 + 1

queries
2 Quantum: With a single oracle query

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

Recall that Uf is defined as:∑
x ,y

Cx ,y |x〉 |y〉 →
∑
x ,y

Cx ,y |x〉 |y ⊕ f (x)〉

The Quantum Circuit of the algorithm is given by:

|0〉 /n H⊗n

Uf

H⊗n

|1〉 H

↑
ψ0

↑
ψ1

↑
ψ2

↑
ψ3

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

Recall that Uf is defined as:∑
x ,y

Cx ,y |x〉 |y〉 →
∑
x ,y

Cx ,y |x〉 |y ⊕ f (x)〉

The Quantum Circuit of the algorithm is given by:

|0〉 /n H⊗n

Uf

H⊗n

|1〉 H

↑
ψ0

↑
ψ1

↑
ψ2

↑
ψ3

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

Property:
H |x〉 = 1√

2

∑
y∈{0,1}(−1)xy |y〉 = 1√

2
(|0〉+ (−1)x |1〉)

The protocol’s steps:
1 |ψ0〉 = |0〉⊗n |1〉. Note that the first register refers to string of

n qubits, while the second register is a single qubit.
2 Apply H to all qubits:

|ψ1〉 =
1√

2n+1

2n−1∑
x=0

|x〉 (|0〉 − |1〉)

3 Apply the oracle Uf :

|ψ2〉 =
1√

2n+1

2n−1∑
x=0

|x〉 (|f (x)〉 − |1⊕ f (x)〉)

it can be rewritten as:

|ψ2〉 =
1√

2n+1

2n−1∑
x=0

(−1)f (x) |x〉 (|0〉 − |1〉)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

Property:
H |x〉 = 1√

2

∑
y∈{0,1}(−1)xy |y〉 = 1√

2
(|0〉+ (−1)x |1〉)

The protocol’s steps:
1 |ψ0〉 = |0〉⊗n |1〉. Note that the first register refers to string of

n qubits, while the second register is a single qubit.

2 Apply H to all qubits:

|ψ1〉 =
1√

2n+1

2n−1∑
x=0

|x〉 (|0〉 − |1〉)

3 Apply the oracle Uf :

|ψ2〉 =
1√

2n+1

2n−1∑
x=0

|x〉 (|f (x)〉 − |1⊕ f (x)〉)

it can be rewritten as:

|ψ2〉 =
1√

2n+1

2n−1∑
x=0

(−1)f (x) |x〉 (|0〉 − |1〉)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

Property:
H |x〉 = 1√

2

∑
y∈{0,1}(−1)xy |y〉 = 1√

2
(|0〉+ (−1)x |1〉)

The protocol’s steps:
1 |ψ0〉 = |0〉⊗n |1〉. Note that the first register refers to string of

n qubits, while the second register is a single qubit.
2 Apply H to all qubits:

|ψ1〉 =
1√

2n+1

2n−1∑
x=0

|x〉 (|0〉 − |1〉)

3 Apply the oracle Uf :

|ψ2〉 =
1√

2n+1

2n−1∑
x=0

|x〉 (|f (x)〉 − |1⊕ f (x)〉)

it can be rewritten as:

|ψ2〉 =
1√

2n+1

2n−1∑
x=0

(−1)f (x) |x〉 (|0〉 − |1〉)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

Property:
H |x〉 = 1√

2

∑
y∈{0,1}(−1)xy |y〉 = 1√

2
(|0〉+ (−1)x |1〉)

The protocol’s steps:
1 |ψ0〉 = |0〉⊗n |1〉. Note that the first register refers to string of

n qubits, while the second register is a single qubit.
2 Apply H to all qubits:

|ψ1〉 =
1√

2n+1

2n−1∑
x=0

|x〉 (|0〉 − |1〉)

3 Apply the oracle Uf :

|ψ2〉 =
1√

2n+1

2n−1∑
x=0

|x〉 (|f (x)〉 − |1⊕ f (x)〉)

it can be rewritten as:

|ψ2〉 =
1√

2n+1

2n−1∑
x=0

(−1)f (x) |x〉 (|0〉 − |1〉)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

Property:
H |x〉 = 1√

2

∑
y∈{0,1}(−1)xy |y〉 = 1√

2
(|0〉+ (−1)x |1〉)

The protocol’s steps:
1 |ψ0〉 = |0〉⊗n |1〉. Note that the first register refers to string of

n qubits, while the second register is a single qubit.
2 Apply H to all qubits:

|ψ1〉 =
1√

2n+1

2n−1∑
x=0

|x〉 (|0〉 − |1〉)

3 Apply the oracle Uf :

|ψ2〉 =
1√

2n+1

2n−1∑
x=0

|x〉 (|f (x)〉 − |1⊕ f (x)〉)

it can be rewritten as:

|ψ2〉 =
1√

2n+1

2n−1∑
x=0

(−1)f (x) |x〉 (|0〉 − |1〉)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

4 Apply H⊗n to the first n qubits:

|ψ3〉 =
1

2n

2n−1∑
y=0

(
2n−1∑
x=0

(−1)f (x)(−1)x·y

)
|y〉 ⊗ 1√

2
(|0〉 − |1〉)

where x · y = x0y0 ⊕ x1y1 ⊕ · · · ⊕ xn−1yn−1 is the sum of the
bitwise product.

5 We measure the first n qubits in the computational basis and
we examine the probability of obtaining all zero’s (|0〉⊗n):

p(0) = | 1

2n

2n−1∑
0

(−1)f (x)|2 (1)

If f (x) is constant, all terms have the same sign and Eq. (1)
gives p(0) = 1
If f (x) is balanced, half terms are +1 and half terms are −1
resulting to Eq. (1) giving p(0) = 0

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

4 Apply H⊗n to the first n qubits:

|ψ3〉 =
1

2n

2n−1∑
y=0

(
2n−1∑
x=0

(−1)f (x)(−1)x·y

)
|y〉 ⊗ 1√

2
(|0〉 − |1〉)

where x · y = x0y0 ⊕ x1y1 ⊕ · · · ⊕ xn−1yn−1 is the sum of the
bitwise product.

5 We measure the first n qubits in the computational basis and
we examine the probability of obtaining all zero’s (|0〉⊗n):

p(0) = | 1

2n

2n−1∑
0

(−1)f (x)|2 (1)

If f (x) is constant, all terms have the same sign and Eq. (1)
gives p(0) = 1
If f (x) is balanced, half terms are +1 and half terms are −1
resulting to Eq. (1) giving p(0) = 0

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

4 Apply H⊗n to the first n qubits:

|ψ3〉 =
1

2n

2n−1∑
y=0

(
2n−1∑
x=0

(−1)f (x)(−1)x·y

)
|y〉 ⊗ 1√

2
(|0〉 − |1〉)

where x · y = x0y0 ⊕ x1y1 ⊕ · · · ⊕ xn−1yn−1 is the sum of the
bitwise product.

5 We measure the first n qubits in the computational basis and
we examine the probability of obtaining all zero’s (|0〉⊗n):

p(0) = | 1

2n

2n−1∑
0

(−1)f (x)|2 (1)

If f (x) is constant, all terms have the same sign and Eq. (1)
gives p(0) = 1

If f (x) is balanced, half terms are +1 and half terms are −1
resulting to Eq. (1) giving p(0) = 0

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

4 Apply H⊗n to the first n qubits:

|ψ3〉 =
1

2n

2n−1∑
y=0

(
2n−1∑
x=0

(−1)f (x)(−1)x·y

)
|y〉 ⊗ 1√

2
(|0〉 − |1〉)

where x · y = x0y0 ⊕ x1y1 ⊕ · · · ⊕ xn−1yn−1 is the sum of the
bitwise product.

5 We measure the first n qubits in the computational basis and
we examine the probability of obtaining all zero’s (|0〉⊗n):

p(0) = | 1

2n

2n−1∑
0

(−1)f (x)|2 (1)

If f (x) is constant, all terms have the same sign and Eq. (1)
gives p(0) = 1
If f (x) is balanced, half terms are +1 and half terms are −1
resulting to Eq. (1) giving p(0) = 0

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

The algorithm is deterministic. Belongs to EQP (Exact
Quantum Polynomial time) which is the quantum version of P
(rather than in BQP which is the quantum version of BPP).

It constitutes the first exponential quantum speed-up.
From exponential many oracle calls for P algorithms, we
succeed with a single oracle query in EQP!

It does not give a speed-up compared to BPP, since if we
allow for (small) probability of failure, there exist efficient
classical algorithms with constant oracle calls (example?)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

The algorithm is deterministic. Belongs to EQP (Exact
Quantum Polynomial time) which is the quantum version of P
(rather than in BQP which is the quantum version of BPP).

It constitutes the first exponential quantum speed-up.
From exponential many oracle calls for P algorithms, we
succeed with a single oracle query in EQP!

It does not give a speed-up compared to BPP, since if we
allow for (small) probability of failure, there exist efficient
classical algorithms with constant oracle calls (example?)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

The Deutsch - Jozsa Algorithm

The algorithm is deterministic. Belongs to EQP (Exact
Quantum Polynomial time) which is the quantum version of P
(rather than in BQP which is the quantum version of BPP).

It constitutes the first exponential quantum speed-up.
From exponential many oracle calls for P algorithms, we
succeed with a single oracle query in EQP!

It does not give a speed-up compared to BPP, since if we
allow for (small) probability of failure, there exist efficient
classical algorithms with constant oracle calls (example?)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Quantum Fourier Transform

Property:

N−1∑
y=0

exp

(
2πi

N
(x − x ′)y

)
= Nδx ,x ′ (2)

Notation:
1 |x〉 = |x1x2 · · · xn〉 = |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉, where

x := x12n−1 + x22n−2 + · · ·+ xn20

2 [0.x1 · · · xm] =
∑m

k=1 xk2−k , e.g. [0.x1x2] = x1
2 + x2

22

Definition (classical): The Discrete Fourier Transform
(DFT) takes a N-dimensional complex vector (a0, · · · , aN−1)
and maps it to (b0, · · · , bN−1) in this way:

by =
1√
N

N−1∑
x=0

ax exp(2πixy/N) (3)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Quantum Fourier Transform

Property:

N−1∑
y=0

exp

(
2πi

N
(x − x ′)y

)
= Nδx ,x ′ (2)

Notation:
1 |x〉 = |x1x2 · · · xn〉 = |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉, where

x := x12n−1 + x22n−2 + · · ·+ xn20

2 [0.x1 · · · xm] =
∑m

k=1 xk2−k , e.g. [0.x1x2] = x1
2 + x2

22

Definition (classical): The Discrete Fourier Transform
(DFT) takes a N-dimensional complex vector (a0, · · · , aN−1)
and maps it to (b0, · · · , bN−1) in this way:

by =
1√
N

N−1∑
x=0

ax exp(2πixy/N) (3)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Quantum Fourier Transform

Property:

N−1∑
y=0

exp

(
2πi

N
(x − x ′)y

)
= Nδx ,x ′ (2)

Notation:
1 |x〉 = |x1x2 · · · xn〉 = |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉, where

x := x12n−1 + x22n−2 + · · ·+ xn20

2 [0.x1 · · · xm] =
∑m

k=1 xk2−k , e.g. [0.x1x2] = x1
2 + x2

22

Definition (classical): The Discrete Fourier Transform
(DFT) takes a N-dimensional complex vector (a0, · · · , aN−1)
and maps it to (b0, · · · , bN−1) in this way:

by =
1√
N

N−1∑
x=0

ax exp(2πixy/N) (3)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Quantum Fourier Transform

Definition (quantum): The Quantum Fourier Transform
(QFT) is a unitary operation F that performs DFT to the
amplitudes of a quantum state:

F
N−1∑
x=0

ax |x〉 =
N−1∑
y=0

by |y〉 =
1√
N

N−1∑
y=0

N−1∑
x=0

ax exp(2πixy/N) |y〉

where the amplitudes ax , by are related as in DFT.

To determine a quantum operation it suffices to know how it
acts on computational basis state and then extend by linearity

The QFT acts as (note that N = 2n):

F |x1x2 · · · xn〉 =
1√
N

(
|0〉+ e2πi [0.xn] |1〉

)
⊗
(
|0〉+ e2πi [0.xn−1xn] |1〉

)
⊗

⊗ · · · ⊗
(
|0〉+ e2πi [0.x1x2···xn] |1〉

)
(4)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Quantum Fourier Transform

Definition (quantum): The Quantum Fourier Transform
(QFT) is a unitary operation F that performs DFT to the
amplitudes of a quantum state:

F
N−1∑
x=0

ax |x〉 =
N−1∑
y=0

by |y〉 =
1√
N

N−1∑
y=0

N−1∑
x=0

ax exp(2πixy/N) |y〉

where the amplitudes ax , by are related as in DFT.

To determine a quantum operation it suffices to know how it
acts on computational basis state and then extend by linearity

The QFT acts as (note that N = 2n):

F |x1x2 · · · xn〉 =
1√
N

(
|0〉+ e2πi [0.xn] |1〉

)
⊗
(
|0〉+ e2πi [0.xn−1xn] |1〉

)
⊗

⊗ · · · ⊗
(
|0〉+ e2πi [0.x1x2···xn] |1〉

)
(4)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Quantum Fourier Transform

Definition (quantum): The Quantum Fourier Transform
(QFT) is a unitary operation F that performs DFT to the
amplitudes of a quantum state:

F
N−1∑
x=0

ax |x〉 =
N−1∑
y=0

by |y〉 =
1√
N

N−1∑
y=0

N−1∑
x=0

ax exp(2πixy/N) |y〉

where the amplitudes ax , by are related as in DFT.

To determine a quantum operation it suffices to know how it
acts on computational basis state and then extend by linearity

The QFT acts as (note that N = 2n):

F |x1x2 · · · xn〉 =
1√
N

(
|0〉+ e2πi [0.xn] |1〉

)
⊗
(
|0〉+ e2πi [0.xn−1xn] |1〉

)
⊗

⊗ · · · ⊗
(
|0〉+ e2πi [0.x1x2···xn] |1〉

)
(4)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Quantum Fourier Transform

We will use Eq. (4) as definition for QFT

Is not hard to see that it is essentially the same with Eq. (3)
of the DFT (see Appendix)

The Quantum Circuit for F is:

|x1〉 H R2 · · · Rn−1 Rn |0〉+ e2πi0.x1···xn |1〉

|x2〉 • · · · H · · · Rn−2 Rn−1 · · · |0〉+ e2πi0.x2···xn |1〉
...

...

|xn−1〉 • • · · · H R2 |0〉+ e2πi0.xn−1xn |1〉

|xn〉 • • · · · • H |0〉+ e2πi0.xn |1〉

where the gate Rk :=

[
1 0

0 e2πi/2
k

]
and we omitted a swap of

the qubits and a factor 1√
2

at the end of the circuit

It is simple to see that F is unitary since the circuit consists of
unitary gates (see also Appendix)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Quantum Fourier Transform

We will use Eq. (4) as definition for QFT

Is not hard to see that it is essentially the same with Eq. (3)
of the DFT (see Appendix)

The Quantum Circuit for F is:

|x1〉 H R2 · · · Rn−1 Rn |0〉+ e2πi0.x1···xn |1〉

|x2〉 • · · · H · · · Rn−2 Rn−1 · · · |0〉+ e2πi0.x2···xn |1〉
...

...

|xn−1〉 • • · · · H R2 |0〉+ e2πi0.xn−1xn |1〉

|xn〉 • • · · · • H |0〉+ e2πi0.xn |1〉

where the gate Rk :=

[
1 0

0 e2πi/2
k

]
and we omitted a swap of

the qubits and a factor 1√
2

at the end of the circuit

It is simple to see that F is unitary since the circuit consists of
unitary gates (see also Appendix)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Quantum Fourier Transform

We will use Eq. (4) as definition for QFT

Is not hard to see that it is essentially the same with Eq. (3)
of the DFT (see Appendix)

The Quantum Circuit for F is:

|x1〉 H R2 · · · Rn−1 Rn |0〉+ e2πi0.x1···xn |1〉

|x2〉 • · · · H · · · Rn−2 Rn−1 · · · |0〉+ e2πi0.x2···xn |1〉
...

...

|xn−1〉 • • · · · H R2 |0〉+ e2πi0.xn−1xn |1〉

|xn〉 • • · · · • H |0〉+ e2πi0.xn |1〉

where the gate Rk :=

[
1 0

0 e2πi/2
k

]
and we omitted a swap of

the qubits and a factor 1√
2

at the end of the circuit

It is simple to see that F is unitary since the circuit consists of
unitary gates (see also Appendix)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Quantum Fourier Transform

Example: Three qubits

F |x1x2x3〉 = |ψ1ψ2ψ3〉

|ψ1〉 = 1√
2

(
|0〉+ e2πi [0.x3] |1〉

)
|ψ2〉 = 1√

2

(
|0〉+ e2πi [0.x2x3] |1〉

)
|ψ3〉 = 1√

2

(
|0〉+ e2πi [0.x1x2x3] |1〉

)

The corresponding circuit is:

|x1〉 H R2 R3 |ψ3〉

|x2〉 • H R2 |ψ2〉

|x3〉 • • H |ψ1〉

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Quantum Fourier Transform

Example: Three qubits

F |x1x2x3〉 = |ψ1ψ2ψ3〉

|ψ1〉 = 1√
2

(
|0〉+ e2πi [0.x3] |1〉

)
|ψ2〉 = 1√

2

(
|0〉+ e2πi [0.x2x3] |1〉

)
|ψ3〉 = 1√

2

(
|0〉+ e2πi [0.x1x2x3] |1〉

)
The corresponding circuit is:

|x1〉 H R2 R3 |ψ3〉

|x2〉 • H R2 |ψ2〉

|x3〉 • • H |ψ1〉

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Quantum Fourier Transform

The number of gates in QFT (including the final swaps) is
Θ(n2)

To implement the classical Fast Fourier Transform Θ(n2n)
gates are needed

It appears we obtained an exponential speed-up for a task
(DFT) that has many application

However, we cannot access(read-out) the amplitudes of a
quantum state, so we cannot extract the classical values of
the DFT.

To achieve real speed-up, we need to use QFT as part of
larger algorithm (see later!)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Quantum Fourier Transform

The number of gates in QFT (including the final swaps) is
Θ(n2)

To implement the classical Fast Fourier Transform Θ(n2n)
gates are needed

It appears we obtained an exponential speed-up for a task
(DFT) that has many application

However, we cannot access(read-out) the amplitudes of a
quantum state, so we cannot extract the classical values of
the DFT.

To achieve real speed-up, we need to use QFT as part of
larger algorithm (see later!)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Quantum Fourier Transform

The number of gates in QFT (including the final swaps) is
Θ(n2)

To implement the classical Fast Fourier Transform Θ(n2n)
gates are needed

It appears we obtained an exponential speed-up for a task
(DFT) that has many application

However, we cannot access(read-out) the amplitudes of a
quantum state, so we cannot extract the classical values of
the DFT.

To achieve real speed-up, we need to use QFT as part of
larger algorithm (see later!)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Quantum Fourier Transform

The number of gates in QFT (including the final swaps) is
Θ(n2)

To implement the classical Fast Fourier Transform Θ(n2n)
gates are needed

It appears we obtained an exponential speed-up for a task
(DFT) that has many application

However, we cannot access(read-out) the amplitudes of a
quantum state, so we cannot extract the classical values of
the DFT.

To achieve real speed-up, we need to use QFT as part of
larger algorithm (see later!)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Appendix: QFT proof details

Rewrite Eq. (4):

F |x1x2 · · · xn〉 = |ψ1ψ2 · · ·ψn〉

= 1√
N

 ∑
y1∈{0,1}

e2πi [0.xn]y1 |y1〉

⊗
 ∑

y2∈{0,1}

e2πi [0.xn−1xn]y2 |y2〉

⊗
⊗ · · · ⊗

 ∑
yn∈{0,1}

e2πi [0.x1x2···xn]yn |yn〉

= 1√

N

 ∑
y1∈{0,1}

e2πix(y1/2
1) |y1〉

⊗
 ∑

y2∈{0,1}

e2πix(y2/2
2) |y2〉

⊗
⊗ · · · ⊗

 ∑
yn∈{0,1}

e2πix(yn/2
n) |yn〉

= 1√

N
⊗N

l=1

 ∑
yl∈{0,1}

e2πix(yl/2
l) |yl〉

 (5)

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Appendix: QFT proof details

It follows that

F |x1x2 · · · xn〉 =
1√
N

N−1∑
y=0

e2πix
∑n

l=1 yl/2
l |y〉

=
1√
N

N−1∑
y=0

e2πixy/N |y〉 (6)

where we used that y = y12n−1 + y22n−2 + · · ·+ yn20,
similarly for x and N = 2n.

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

Appendix: QFT proof details

Express F as an operator: F = 1√
N

∑N−1
x ,y=0 e

2πixy/N |y〉 〈x |
Show that is unitary:

F †F =
1

N

N−1∑
x ,y ,x ′,y ′=0

e−2πix
′y ′/N |x ′〉 〈y ′| e2πixy/N |y〉 |x〉

=
1

N

N−1∑
x ,y ,x ′,y ′=0

e−2πi(x
′y ′−xy)/N |x ′〉 〈x | 〈y ′| y〉

=
1

N

N−1∑
x ,x ′=0

N−1∑
y=0

e−2πiy(x
′−x)/N

 |x ′〉 〈x |
=

1

N

N−1∑
x ,x ′=0

Nδx ,x ′ |x ′〉 〈x | =
N−1∑
x=0

|x〉 〈x | = 1 �

Petros Wallden Lecture 7: Complexity and Quantum Algorithms I

